skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pignatari, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, we present a new approach to produce spectroscopic constants and model first-principles synthetic spectra for all molecules of astrophysical interest. We have generalized our previous diatomic molecule simulation framework, employing transition-optimized shifted Hermite (TOSH) theory, thereby enabling the modeling of polyatomic rotational constants for molecules with three or more atoms. These capabilities are now provided by our new code Epimetheus. As a first validation of our approach, we confront our predictions and assess their accuracy against the well-studied triatomic molecule ozone 666 (16O3), in addition to eight of its potential isotopomers: ozone 668 (16O16O18O), 686 (16O18O16O), 667 (16O16O17O), 676 (16O17O16O), 688 (16O18O18O), 868 (18O16O18O), 888 (18O3), and 777 (17O3). We then assess the accuracy of these rotational constants using the Epimetheus data in our code Pandora, and generate synthetic molecular spectra. The ozone spectra presented here are purely infrared and not Raman. Epimetheus builds upon the work from our previous code Prometheus, which used the TOSH theory to account for anharmonicity for the fundamentalν = 0 → ν = 1 band, going further to now account for triatomic molecules. This is combined with thermal profile modeling for the rotational transitions. We have found that this extended method performs well, typically approximating the spectroscopic constants with errors of less than 2%. Some issues do arise depending on the symmetry group of the ozone isotopomer. From these spectroscopic constants and using our own spectral modeling code, we show that we can provide the data to produce appreciable molecular spectra, which are good approximations until high-resolution studies can be done. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  2. Context.Although current observations indicate that there are two distinct sequences of disk stars in the [α/M] versus [M/H] parameter space, further complexity is evident in the chemical makeup of the Milky Way and consequently suggests a complicated evolutionary history. Aims.We developed two-infall galactic chemical evolution (GCE) models consistent with the Galactic chemical map. Methods.We obtained new GCE models simulating the chemical evolution of the Milky Way, as constrained by a golden sample of 394 000 stellar abundances of the Milky Way Mapper survey from data release 19 of SDSS-V. The separation between the chemical thin and thick disks was defined using [Mg/M]. We used the chemical evolution environmentOMEGA+combined with Levenberg-Marquardt (LM) and bootstrapping algorithms for the optimization and error estimation. We simulated the entire Galactic disk and considered six galactocentric regions, allowing for a more detailed analysis of the formation of the inner, middle, and outer Galaxy. We investigated the evolution ofα, odd-Z, and iron-peak elements, covering 15 species altogether. Results.The chemical thin and thick disks are separated by Mg observations, which the otherα-elements show similar trends with, while odd-Z species demonstrate different patterns as functions of metallicity. In the inner Galactic disk regions, the locus of the low-Mg sequence is gradually shifted toward higher metallicity, while the high-Mg phase is less populated. The best-fit GCE models show a well-defined peak in the rate of the infalling matter as a function of the Galactic age, confirming a merger event about 10 Gyr ago. We show that the timescale of gas accretion, the exact time of the second infall and the ratio between the surface mass densities associated with the second infall event and the formation event vary with the distance from the Galactic center. According to the models, the disk was assembled within a timescale of (0.32±0.02) Gyr during a primary formation phase, followed by an increasing accretion rate over a (0.55±0.06) Gyr-timescale and a relaxation phase that lasted (2.86±0.70) Gyr, with a second peak seen for the infall rate at (4.13±0.19) Gyr. Conclusions.Our best Galaxy evolution models are consistent with an inside-out formation scenario of the Milky Way disk and in agreement with the findings of recent chemodynamical simulations. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Abstract Presolar graphite grains carry the isotopic signatures of their parent stars. A significant fraction of presolar graphites show isotopic abundance anomalies relative to solar for elements such as O, Si, Mg, and Ca, which are compatible with nucleosynthesis in core-collapse supernovae (CCSNe). Therefore, they must have condensed from CCSN ejecta before the formation of the Sun. Their most puzzling abundance signature is the22Ne-enriched component Ne-E(L), interpreted as the effect of the radioactive decay of22Na (T1/2= 2.6 yr). Previous works have shown that if H is ingested into the He shell and not fully destroyed before the explosion, the CCSN shock in the He-shell material produces large amounts of22Na. Here we focus on such CCSN models, showing a radioactive26Al production compatible with grain measurements, and analyze the conditions of22Na nucleosynthesis. In these models,22Na is mostly made in the He shell, with a total ejected mass varying between 2.6 × 10−3Mand 1.9 × 10−6M. We show that such22Na may already impact the CCSN light curve 500 days after the explosion, and at later stages it can be the main source powering the CCSN light curve for up to a few years before44Ti decay becomes dominant. Based on the CCSN yields above, the 1274.53 keVγ-ray flux due to22Na decay could be observable for years after the first CCSN light is detected, depending on the distance. This makes CCSNe possible sites to detect a22Naγ-ray signature consistently with the Ne-E(L) component found in presolar graphites. Finally, we discuss the potential contribution from22Na decay to the Galactic positron annihilation rate. 
    more » « less
    Free, publicly-accessible full text available August 22, 2026
  4. Abstract Phosphorus-enhanced (P-rich; [P/Fe] ≳ +0.8) giants have been found among mildly metal-poor field stars, but in only one star in a globular cluster (GC), M4 (NGC 6121). Also, in a sample of bulge spheroid stars, some of them showed a moderate P enhancement in the range +0.5 < [P/Fe] < +1.0. In this paper we derive the P abundance of moderately metal-poor ([Fe/H] ≳ −1) GC stars, aiming to check if the phenomenon could be related to the unusual multiple stellar populations found in most GCs. Here we present the detection of moderately P-enhanced stars among two out of seven bulge GCs (Tonantzintla 1 and NGC 6316), with metallicities similar to those of the bulge-field P-rich stars. UsingH-band high-resolution (R∼ 22,500) spectra from the APOGEE-2 survey, we present the first high-resolution abundance analysis of [P/Fe] from the PI16482.932 Å line in a sample of selected bulge GCs. We find that all P-rich stars tend to also be N-rich, which hints at the origin of P-rich stars as second-generation stars in GCs. However no other correlations of P and other elements are found, which are usually indicators of second-generation stars. Further studies with larger samples and comparisons with field stars will be needed before any firm conclusions are drawn. 
    more » « less
    Free, publicly-accessible full text available September 30, 2026
  5. Abstract Presolar grains are stardust particles that condensed in the ejecta or in the outflows of dying stars and can today be extracted from meteorites. They recorded the nucleosynthetic fingerprint of their parent stars and thus serve as valuable probes of these astrophysical sites. The most common types of presolar silicon carbide grains (called mainstream SiC grains) condensed in the outflows of asymptotic giant branch stars. Their measured silicon isotopic abundances are not significantly influenced by nucleosynthesis within the parent star but rather represent the pristine stellar composition. Silicon isotopes can thus be used as a proxy for galactic chemical evolution (GCE). However, the measured correlation of29Si/28Si versus30Si/28Si does not agree with any current chemical evolution model. Here, we use a Monte Carlo model to vary nuclear reaction rates within their theoretical or experimental uncertainties and process them through stellar nucleosynthesis and GCE models to study the variation of silicon isotope abundances based on these nuclear reaction rate uncertainties. We find that these uncertainties can indeed be responsible for the discrepancy between measurements and models and that the slope of the silicon isotope correlation line measured in mainstream SiC grains agrees with chemical evolution models within the nuclear reaction rate uncertainties. Our result highlights the importance of future precision reaction rate measurements for resolving the apparent data–model discrepancy. 
    more » « less
  6. ABSTRACT We report isotope data for C, N, Al, Si, and S of 33 presolar SiC and Si3N4 grains (0.3–1.6 $$\mu$$m) of Type X, C, D, and N from the Murchison CM2 meteorite of likely core-collapse supernova (CCSN) origin which we discuss together with data of six SiC X grains from an earlier study. The isotope data are discussed in the context of hydrogen ingestion supernova (SN) models. We have modified previously used ad-hoc mixing schemes in that we considered (i) heterogeneous H ingestion into the He shell of the pre-SN star, (ii) a variable C-N fractionation for the condensation of SiC grains in the SN ejecta, and (iii) smaller mass units for better fine-tuning. With our modified ad-hoc mixing approach over small scales (0.2–0.4 M⊙), with major contributions from the O-rich O/nova zone, we find remarkably good fits (within a few per cent) for 12C/13C, 26Al/27Al, and 29Si/28Si ratios. The 14N/15N ratio of SiC grains can be well matched if variable C-N fractionation is considered. However, the Si3N4 isotope data point to overproduction of 15N in hydrogen ingestion CCSN models and lower C-N fractionation during SiC condensation than applied here. Our ad-hoc mixing approach based on current CCSN models suggests that the O-rich O/nova zone, which uniquely combines explosive H- and He-burning signatures, is favourable for SiC and Si3N4 formation. The effective range of C/O abundance variations in the He shell triggered by H ingestion events in the massive star progenitor is currently not well constrained and needs further investigation. 
    more » « less
  7. Context. The atmospheres of phosphorus-rich (P-rich) stars have been shown to contain between 10 and 100 times more P than our Sun. Given its crucial role as an essential element for life, it is especially necessary to uncover the origin of P-rich stars to gain insights into the still unknown nucleosynthetic formation pathways of P in our Galaxy. Aims. Our objective is to obtain the extensive chemical abundance inventory of four P-rich stars, covering a large range of heavy (Z > 30) elements. This characterization will serve as a milestone for the nuclear astrophysics community to uncover the processes that form the unique chemical fingerprint of P-rich stars. Methods. We performed a detailed 1D local thermodynamic equilibrium abundance analysis on the optical UVES spectra of four P-rich stars. The abundance measurements, complemented with upper-limit estimates, included 48 light and heavy elements. Our focus lay on the neutron-capture elements (Z > 30), in particular, on the elements between Sr and Ba, as well as on Pb, as they provide valuable constraints to nucleosynthesis calculations. In past works, we showed that the heavy-element observations from the first P-rich stars are not compatible with either classical s-process or r-process abundance patterns. In this work, we compare the obtained abundances with three different nucleosynthetic scenarios: a single i-process, a double i-process, and a combination of s- and i-processes. Results. We have performed the most extensive abundance analysis of P-rich stars to date, including the elements between Sr and Ba, such as Ag, which are rarely measured in any type of stars. We also estimated constraining upper limits for Cd I, In I, and Sn I. We found overabundances with respect to solar in the s-process peak elements, accompanied by an extremely high Ba abundance and slight enhancements in some elements between Rb and Sn. No global solution explaining all four stars could be found for the nucleosynthetic origin of the pattern. The model that produces the least number of discrepancies in three of the four stars is a combination of s- and i-processes, but the current lack of extensive multidimensional hydrodynamic simulations to follow the occurrence of the i-process in different types of stars makes this scenario highly uncertain. 
    more » « less
  8. Abstract A clear definition of the contribution from the slow neutron-capture process (s process) to the solar abundances between Fe and the Sr-Zr region is a crucial challenge for nuclear astrophysics. Robust s-process predictions are necessary to disentangle the contribution from other stellar processes producing elements in the same mass region. Nuclear uncertainties are affecting s-process calculations, but most of the needed nuclear input are accessible to present nuclear experiments or they will be in the near future. Neutron-capture rates have a great impact on the s process in massive stars, which is a fundamental source for the solar abundances of the lighter s-process elements heavier than Fe (weak s-process component). In this work we present a new nuclear sensitivity study to explore the impact on the s process in massive stars of 86 neutron-capture rates, including all the reactions between C and Si and between Fe and Zr. We derive the impact of the rates at the end of the He-burning core and at the end of the C-burning shell, where the$$^{22}$$ 22 Ne($$\alpha $$ α ,n)$$^{25}$$ 25 Mg reaction is is the main neutron source. We confirm the relevance of the light isotopes capturing neutrons in competition with the Fe seeds as a crucial feature of the s process in massive stars. For heavy isotopes we study the propagation of the neutron-capture uncertainties, finding a clear difference of the impact of Fe and Co isotope rates with respect to the rates of heavier stable isotopes. The local uncertainty propagation due to the neutron-capture rates at the s-process branching points is also considered, discussing the example of$$^{85}$$ 85 Kr. The complete results of our study for all the 86 neutron-capture rates are available online. Finally, we present the impact on the weak s process of the neutron-capture rates included in the new ASTRAL library (v0.2). 
    more » « less
  9. Neutron captures produce the vast majority of abundances of elements heavier than iron in the Universe. Beyond the classical slow ( s) and rapid ( r) processes, there is observational evidence for neutron-capture processes that operate at neutron densities in between, at different distances from the valley of β stability. Here, we review the main properties of the s process within the general context of neutron-capture processes and the nuclear physics input required to investigate it. We describe massive stars and asymptotic giant branch stars as the s-process astrophysical sites and discuss the related physical uncertainties. We also present current observational evidence for the s process and beyond, which ranges from stellar spectroscopic observations to laboratory analysis of meteorites. 
    more » « less
  10. Abstract Many of the short-lived radioactive nuclei that were present in the early solar system can be produced in massive stars. In the first paper in this series, we focused on the production of26Al in massive binaries. In our second paper, we considered rotating single stars; two more short-lived radioactive nuclei,36Cl and41Ca; and the comparison to the early solar system data. In this work, we update our previous conclusions by further considering the impact of binary interactions. We used the MESA stellar evolution code with an extended nuclear network to compute massive (10–80M), binary stars at various initial periods and solar metallicity (Z= 0.014), up to the onset of core collapse. The early solar system abundances of26Al and41Ca can be matched self-consistently by models with initial masses ≥25M, while models with initial primary masses ≥35Mcan also match36Cl. Almost none of the models provide positive net yields for19F, while for22Ne the net yields are positive from 30Mand higher. This leads to an increase by a factor of approximately 4 in the amount of22Ne produced by a stellar population of binary stars, relative to single stars. In addition, besides the impact on the stellar yields, our 10Mprimary star undergoing Case A mass transfer ends its life as a white dwarf instead of as a core-collapse supernova. This demonstrates that binary interactions can also strongly impact the evolution of stars close to the supernova boundary. 
    more » « less